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A simple model based on a master equation is constructed in order to reveal the details of the mutational
events modifying simple sequence repeats in the human genome, A database of simple repeats together with
their flanking sequences comprising approximately 105 entries from all 24 human chromosomes was con-
structed. By aligning the pairs of fragments of sequences containing the repeat elements, the matrices that
count the number of slippage events were evaluated. The counts were then used as a target to be reproduced by
our theoretical model, in which the elongation and shortening of the repeats proceed through a mechanism in
which the step lengths exhibit a decaying distribution in the form of an inverse power law rather than through
one nucleotide extension or deletion, which was the most frequent supposition in previous studies.
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I. INTRODUCTION

The acquisition of the nucleotide sequences of entire ge-
nomes of several biological species, including the human
genome, improves the insight into biological processes on
the molecular level and enables one to construct physical
models. At the moment the understanding of organismal
functioning and development is still buried deeply among the
fine details of genome organization. The availability of infor-
mation about nucleotide sequences enables us to obtain par-
tial answers. One of the challenges is posed by the very high
content of repeat sequences, which is close to 50% in the
human genomef1g. Repeats can be of tandem or interspersed
character. Interspersed repeats are the products of transposon
activities, while tandem repeats have their source in repeat
amplification mechanisms. Transposons are special se-
quences that possess the ability to form new copies else-
where in the genome. Not all of them can multiply them-
selves autonomously. Examples of autonomous elements are
long interspersed repeat elementssLINE’sd or retroviruslike
elements, each of them comprising several thousands of
nucleotides. Autonomous transposon elements mediate in the
proliferation of other transposon elements such as short in-
terspersed repeatssSINE’sd a few hundreds of nucleotides in
length, which exhibit the highest copy numbersone and half
milliond in the human genome. Altogether the interspersed
repeats represent more than 40% of the human genome. The
most widespread SINE elements are so calledAlu sequences
whose elements comprise approximately 330 nucleotides.
Studies of the internal structure of the interspersed repeats
reveal the stretches of tandem repeats that are integrated in
the LINE or SINE sequence itself, and also the flanks of
interspersed repeats are populated by tandem repeats. Be-
sides the location in the vicinity of LINE or SINE sequences,
tandem repeats are also scattered throughout the chromo-
somes. Repeats in nucleotide sequences have been linked to
the notion of molecular parasitismf2g.

In this work we shall focus our attention on the category
of tandem repeats with monomeric units of minimal com-
plexity. Such repeats are usually called microsatellites or
short simple repeatssSSR’sd. They appear predominantly in
noncoding regionsf3,4g, but also in the regions where pro-
teins are codedf5g.

The SSR content of the human genome is approximately
2%. This is far above the expectation on the basis of the
hypothesis of a random nucleotide sequence. One can hy-
pothesize that an overrepresented class of sequences can ex-
ist only if a special mechanism of repeat amplificationf6g
exists. It turns out that such a mechanism is present in the
process of either DNA synthesis or DNA recombination. The
repeat amplifying mechanism has its roots in the fact that the
translational symmetry of the template strand produces de-
generate energetic states in the landscape of the template
DNA strand–enzyme and nascent DNA strand–enzyme inter-
actions. Such a degeneracy makes the mechanism of DNA
synthesis vulnerable to errors in the form of so called slip-
page events that occur when the DNA ribbon slips out of
order to a new position relative to the polymerase enzyme,
forward or backward for one or several monomeric repeat
units. If the template strand slips backward, for instance, the
resulting nascent strand will be prolonged; in the opposite
case shortening will result. A similar mechanism is operative
also in the case of another important molecular cellular pro-
cess: DNA recombination at meiosis. Also in this case the
repetitive DNA sequence represents a drawback since a vital
phase of recombination is the pairing of complementary
strands of highly homologous regions of maternal and pater-
nal regions of DNA sequences. In repetitive regions the pro-
cess of homologous pairing has multiple realizations and
with a certain probability the recombination process results
in the prolongation of one and the shortening of the other
newly recombined strand. The above mentioned mechanisms
become operative only above a certain threshold repeat
length that is approximately ten base pairs. The value of the
threshold repeat length is approximately equal to the extent
of the contact between the DNA helix and polymerase en-
zyme f7g.*Electronic address: branko@hp10.ki.si
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Since we are building our strategy on the statistics of the
events that can be inferred by comparing pairs of sequences
having a common ancestor, it is important to note that there
exists also another mechanism which contributes to the
growth of DNA content. This is the segmental duplication
mechanism which generates new copies of DNA segments
elsewhere on the same chromosome, or on another chromo-
some. The lengths of the segments being copied are usually
on the megabase scale. Hsieh and co-workersf8g have shown
that segmental duplication is a fundamental ingredient of ge-
nome evolution. For our purpose the phenomenon of seg-
mental duplication mechanism is extremely important be-
cause it provides us with an ample amount of repeats
positioned in closely related flanking sequences, which we
analyze with the purpose of getting insight into the SSR
evolutionary dynamics.

Besides repeat elongations and repeat shortenings, point
mutations also modify the repeats. The results of point mu-
tation are two shorter repeats or, in the case that the mutation
takes place too close to the left or to the right end of the
repeat, depending on the criterion for the minimum repeat
length, only one or none of the remaining segments may
retain the repeat character. The combined effect of slippage
and point mutational mechanisms can be modeled in various
waysf9g. The models should be able to reproduce, as well as
the repeat length distribution, also the positional correlations
between the sites where the repeats are located along the
DNA sequence. It was shown by Penget al. f10g that
nucleotide-nucleotide correlation in the DNA sequences can
be described by an inverse power law, but it was also shown
that in specific cases the correlation functions decay expo-
nentially f11g. Holste et al. f12g, who analyzed one of the
human chromosomes, found that the nucleotide-nucleotide
correlation functions exhibit a clear inverse power law decay,
and they demonstrated that the distribution of interspersed
repeats and SSR’s plays a significant role in shaping the
overall picture of nucleotide distributions.

In our previous workf13g the positional correlations be-
tween the repeats were used as a constraint together with the
SSR length distribution in constructing a model that allowed
the slippage process to possess asymmetry in the elongation
versus shortening of the SSR. We demonstrated that the
model reproduces satisfactorily the properties of SSR’s in the
human genome. An obvious shortcoming of our approach
was due to the fact that the model allowed only slippage
events with unit step lengthDn= ±1. In this work we explore
how far from reality this approximation is. By examining
many pairs of repeats together with their environments we
scrutinize the flanking sequences on both sides of the repeats
to detect evidence about a common history. If the flanking
regions of two repeats possess high enough homology, they
are most probably descendants of a common ancestral se-
quence. Similar or homologous sequences are believed to be
the result of a divergence, be it in the form of speciation
sappearance of new biological speciesd or in the form of
copying DNA segments from one site to another site of the
same chromosome or from one chromosome to another one.
To detect the mutations that occur after speciation one should
compare two paralogousshaving the same functiond DNA
sequences belonging to the members of two closely related

species. We limit ourselves to the human species where one
can perform so called orthologous interchromosomal and in-
trachromosomal comparisons that retrieve the homologies
resulting from transposon activities or segmental duplica-
tions. Transposon activities in human species are declining
during the last several millions of years and today the com-
parisons that track the transposing processes uncover low
homologies with several overlapping events taking place at
the same site. The segmental duplications, on the other hand,
seem to occur with a rather uniform pace and the total
amount of sequences that were duplicated and exhibit today
a similarity greater than 90% is approximately 3.3%.

The subjects of our analyses are homologous pairs of hu-
man sequences containing repeats. When finding such a case
one should try to determine whether the difference between
the repeats themselves, if there is any, stems from a single
repeat modification event or whether there were several
modifications superimposed on the particular repeat. In what
follows we shall work out a strategy that will try to reveal
the details of the repeat elongation and shortening process.

The most frequent short simple repeats in human genome
are mononucleotidessa/ td. They are followed bysat/atd,
sac/gtd, and sag/ctd repeat elements whose probabilities of
appearance exhibit a decreasing order. There are approxi-
mately 23106 nucleotides within polyadenine tracts longer
than ten base pairs. All the other categories of SSRs are at
least five times less abundant and therefore we shall base our
work on analyses ofsa/ td repeats. This choice is to some
extent problematic andsa/ td repeats are usually left aside
arguing that “polyadenine tracts are usually associated with
Alu sequences and hence subject to special selection con-
straints” sa quotation taken from Ref.f14gd. In order to re-
duce the objections against thesa/ td repeats we have omitted
from our analyses the polyadenine tracts which are parts of
Alu sequences.

II. ANALYSES OF HUMAN POLYADENINE REPEATS

The sequences of all 24 human chromosomes from ftp://
ftp.ncbi.nih.gov/genomes/HIsapiens were analyzed and sev-
eral files of polyadenine elements together with their envi-
ronments in the form of fragments of left and right flanking
sequences were created. The lengths of the flanking frag-
ments were set arbitrarily to 20 nucleotides at each side of
the repeat. The poly adenine tracts were required to have a
minimum length of 10 nucleotides. Further, we only took
into consideration the repeats whose flanks possess high
enough information content. This means that the repeat ele-
ments whose flanks exhibited repeat structure were dis-
carded. The resulting database extracted from human ge-
nome nucleotide sequences encompassed more than 33105

repeats.
The flanks of all the repeats were mutually comparedsthe

left flank with the left flank and the right flank with the right
flankd. When the homology was above 90% the information
about the number of such cases was stored into the replace-

ment frequency matricesÃshdsm,nd. The sm,nd pair of indi-
ces refers to the lengths of the two repeats whose flanks were
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compared. The superscripth refers to the homologies be-
tween the flankssh=100%, 95%, and 90%d. The polyadenine
tracts were not required to be pure but were allowed to pos-
sess 0, 1, or 2 point mutations in theh=100%, 95%, and
90% classes, respectively. This requirement makes flanks
and repeats compatible as far as the mutational history is
concerned. To obtain an impression about the form of the
replacement frequency matrices, we present them graphically
in Figs. 1–3. One can notice two distinctive features:sid the

Ãshdsm,nd values decay roughly exponentially as a function
of the absolute value of the difference between the two indi-
ces, andsii d the repeats in lower mutual homology classes
exhibit slower decay.

A. Replacement frequency and mutation probability matrices

Let us present and discuss the algebra on the basis of
which the data that are presented in Figs. 1–3 were analyzed.
The length modifications of polyadenine repeats can be
treated by means of the formalism of rate equationsf15g. Let
us consider a populationNsnd of repeats that are in dynamic

equilibrium. The repeat elements can be created, destroyed,
or experience elongations and shortenings due to point mu-
tations and slippage events. The rate equation for the repeat
populationNsnd can be written as follows:

d

dt
mNsmd = o

n

wmnnNsnd − mNsmdo
n

wnm for eachm.

s1d

The wmn matrix elementsbelonging to thew matrixd repre-
sents the probability that a repeat with lengthn is trans-
formed to a repeat with lengthm per unit of time. By means
of the w matrix andNsnd histogram one can make a quanti-
tative prediction of the repeat modification events. The num-
ber of counts predicted by the theoretical model can be ex-
pressed as the product of the matrix elementwmn that
represents the probability of the event and the “mass”
fnNsndg of the repeats that can be subjected to the transition.
However, since one has no control over the directionality of
the transitions, it makes sense to take the average value of
the m→n and m←n transitions, and we define the model
replacement frequency matrix as follows:

Amod
std sm,nd = fWmnstdnNsnd + WnmstdmNsmdg/2. s2d

TheWstd matrix is derived from thew matrix as described in
the Appendix. Thet parameter measures the time that
elapsed from the moment when the pairs of repeats that are
compared bifurcated and started their independent muta-
tional history. According to the molecular clock hypothesis
the homology of a pair of sequences that have a common
origin decays as a function of time by the Jukes and Cantor
formula f16g h=h0+s1−h0dexps−pmtd, whereh0 is the ho-
mology of unrelated sequences andpm is the probability for
a point mutational event per nucleotide per unit of time. In
the case of flanking regionsh0 is 1/4 because of four differ-
ent nucleotides participating in the sequence while within the
mononucleotide repeats one can consider the sequence as
being composed of two types of nucleotides: those belonging
to the repeatsadenines in our cased, and mutated ones, thus
leading toh0=1/2.

FIG. 1. Plot of the mutation frequency matrixÃ shd within the
classh=100%. The two horizontal axes refer to the lengths of the
two polyadenine repeats that are compared and along the vertical
axis the logarithm of the number of the pairs found form,n pair of
repeat lengths is plotted.

FIG. 2. Same as Fig. 1, except for the classh=95%.

FIG. 3. Same as Fig. 1, except for the classh=90%.
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The matrix elements that are responsible for the creation
and destruction processes are located in the first column and
the first line of thew matrix, respectively. It is very difficult
to parametrize the probabilities of these processes. One
would need many parameters that are nearly impossible to
determine and the only reasonable strategy is to devise a
model where the creation and destruction processes are not
taken explicitly into account.

A point mutational event that occurs within the repeat
transforms a repeat with lengthn into two repeats with
lengthsn1 andn2 wheren1+n2+1=n. The parametrization of
mutational events is rather simple: One supposes that any
site within the repeat is hit by the mutation with equal prob-
ability pm.

The elongation and shortening processes are usually pa-
rametrized with one or two parameters. The one-parameter
expression for the probability per unit of time that a repeat is
subjected to the slippage event is usually written in the form
wmn

ssd =nps. This implies that the slippage probability is pro-
portional to the repeat length. Another possibility is to allow
the slippage process to be unsymmetricf13g in the sense that
elongations are not necessarily equally as probable as short-
enings. In such a case one has to introduce another parameter
that measures the asymmetry. In what follows we shall work
out a methodology that will focus on symmetric slippage
events. Ignoring the creation and destruction processes and
under the hypothesis that the slippage process leads to repeat
elongation with the same probability as for repeat shortening,
the mutation probability matrix looks as follows:

wmn=5
nfsum− nud, n = m+ 1 or n , m,

4mpm/sn − 1d + nfsum− nud, n . m+ 1,

− o
ksÞmd

wkm, n = m. 6
s3d

The function fsum−nud defines the distribution of the prob-
abilities of slippage step lengths, which broadens the stan-
dard supposition that is based on the model according to
which the slippage step lengths are of unit sizesum−nu=1d.
The slippage step length distribution functionfsum−nud was
assayed using three functional forms: a rectangular one, an
exponentially decaying form, and an inverse power law
form. The first term in the middle line on the right-hand side
of Eq. s3d refers to the point mutational events that occur
when a repeat of lengthn is split into two pieces with lengths
m=m1 andm2. To focus attention on the slippage process we
conduct the procedure by ignoring the point mutational
events, that is, by neglecting the 4mpm/ sn−1d term. This
means that we treat the repeats as if they were not interrupted
by point mutations. In this way the concept of the molecular

clock can be invoked, since theÃ shd data which are parti-
tioned into three homology classes withh=100%, 95%, and
90% are supposed to belong to three time intervals with
gradually increasing amount of superimposed mutational
events.

The Amod
std matrix can be compared with the replacement

frequency matrix obtained by means of analyses of human

genomic DNA sequences. In fact, theÃ shd matrices presented
in Figs. 1–3 are not the most suitable quantities to be com-
pared withAmod

std , and we introduced the mass weightedA shd

matrices whose matrix elements are proportional to the num-
ber of monomers that are involved in the slippage process.
When comparing two repeats, one with lengthm and the
other with lengthn one does not know whether the slippage
direction ism→n or m←n. The number of monomers that
are subjected to the slippage process could be thusm or n,
and therefore we defined a lower triangular mass weighted
replacement frequency matrix as the average value:

Ashdsm,nd = sm+ ndÃshdsm,nd/2. s4d

To understand and reproduce the slippage process we
should determine the parameters introduced into the muta-
tion probability matrix Wstd. The model replacement fre-
quency matricesAmod

std that result fromWstd should fit to the
natural replacement frequency matricesA shd that were gener-
ated by counting the pairs of repeats in homologous environ-
ments.

III. RESULTS

The numerical results show that the inverse power law
leads to the best agreement between model and natural re-
placement frequency matrices. The slippage step length dis-
tribution function was modeled in the formfsum−nud=psum
−nu−a /zsad. The parameterps is a measure of the probability
that a slippage occurs. The factorzsad is the Riemann zeta
function and takes care of the normalization of the step
length distribution. Whena→` the distribution function ap-
proaches thed function at um−nu=1, which corresponds to
the standard one-nucleotide slippage regime, while finite val-
ues of a mean finite width of the step length distribution.
Since the disruption of the repeats by point mutations was
only used as a measure of time that elapsed from the moment
when the two sequences were duplicated, thepm parameter
does not enter into the construction of the model replacement
frequency matrices. There remain only two parameters to be
determined: the exponenta and the dimensionlesssex-
pressed in units of the inverse 1/ps parameterd time param-
eter t for each homology class. A two-parameter fitting pro-
cedure does not represent a serious numerical task provided
that the value function which is subjected to the optimization
procedure is well defined and smooth enough. In our case the
most straightforward choice of the quantity to be minimized
would be an arbitrary norm of the difference between natural
and model mass weighted replacement frequency matrices.
We decided to use the absolute value of the difference be-
tween the logarithms of the first few columns of theA shd and
Amod

std matrices, respectively. The logarithmic measure was
used instead of a linear measure in order to attain the proper
weight of far-from-diagonal elements that would have negli-
gible weight in a linear scaling regime due to rapid decay of
the Ashdsm,nd elements as a function of growing difference
between the two indices. The fitting procedure was carried
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out by a simple brute force search for the pairs ofa and t
values that produce optimal fit betweenAmod

std and A shd. The
following results were obtained:a=2.4±0.4;pst=0.03, 0.05,
and 0.07 for the 100%, 95%, and 90% homologies in the
flanking regions, respectively. In Figs. 4–6 the counts per-
formed on natural sequences and the results of our model are
compared. Full lines represent the columns of mass weighted
replacement frequency matrices drawn on a logarithmic
scale. Dashed lines represent the results of our model with
the parameters fitted to reach the optimal agreement with the
natural matrix counterpart. The fitting procedure was hin-

dered due to strong scatter ofA shd elements, but in spite of
that we think that the agreement between the matrices de-
duced from natural DNA sequences is satisfactory.

IV. DISCUSSION AND CONCLUSIONS

In this work we demonstrate that the mutational dynamics
of short sequence repeats can also be treated in a standard
way by searching for pairs of highly homologous sequences
and inferring the repeat modification events from the ob-
served differences between the pairs of sequences that are
supposed to have a common ancestor. In our case we deal
with three types of mutational events: repeat elongations and
shortenings, point mutations in the regions of repeats, and
point mutations in the flanking regions. Algebra based on the
master equation formalism enabled us to resolve the problem
of superpositions of mutational events and to single out the
probabilities of elementary mutational events.

Our results enable us also to draw a comparison between
point mutational and slippage processes. The three homolo-
gies s100%, 95%, and 90%d correspond, according to the
Jukes-Cantor formula, to the valuespmt=0, 0.069, and 0.14.
Let us compare these values with the corresponding values
pertaining to slippage processes. The first pair of valuespst
=0.03,pmt=0 is consistent with the notion that slippage pro-
cesses are running at a higher pace than point mutations.
This notion is based on a scenario that proposes that slippage
processes and point mutations contribute comparable
amounts of change at each turnover of human generations.
The values of the parameters that support this regime are
pm=2.2310−9/yr/nucleotidef17g and one to two orders of
magnitude higher value ofps f14g. However, the second two
pairs of pst, pmt values sps

95/pm
95=0.05/0.069 andps

90/pm
90

=0.07/0.14d indicate that the balance betweenps and pm
need not be so much in favor ofps. One should of course be
aware that the comparison that is based on the alignment of

FIG. 4. The decay of columns ofA shd sfull linesd and Amod
std

sdashed lined matrices.A shd matrix elements were deduced from
natural DNA sequences and they are compared withAmod

std which is
the result of our model.h=100%.

FIG. 5. Same as Fig. 4 for classh=95%.

FIG. 6. Same as Fig. 4 for classh=90%.
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flanks swith 95% and 90% homologiesd of the repeats that
contain one or two point mutations are treated as if they were
pure repeats. This trick helped us to build the concept of the
molecular clock directly into the slippage process, but on the
other hand we introduced some inconsistency because mu-
tated repeats do not necessarily exhibit the same slippage
propensity as nonmutated ones and since the time ordering of
the two events is unknown, our results corresponding toh
=95% and 90% are to some extent uncertain. We should thus
mostly rely on theh=100% case which does not provide us
a quantitative measure about theps/pm ratio, but only indi-
cates that the slippage process runs faster than the point mu-
tational process.

To conclude, let us recapitulate our findings. The main
interest of our results is the evidence that it is possible to go
beyond a simple model which assumes that the step length
distribution in the slippage process has a triviald function
appearance withDn= ±1. The results predict a monotoni-
cally decaying step length distribution in the form of an in-
verse power law, not very far from ad function, since the
distribution decays faster than the inverse second power.
Only one-third of slippages are predicted to go beyond the
single nucleotide step length.
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APPENDIX: THE PROPERTIES OF THE w MATRIX

In this appendix the properties of thew matrices are dis-
cussed. For the stationarity conditiondfNsmdg /dt=0 Eq. s1d
acquires the formfwgf =0 with f =nNsnd /onNsnd and wmm

=−oksÞmdwkm. It is convenient to incorporate thedt param-
eter into thew matrix and to define

Wmnsdtd = Hwmndt, mÞ n,

1 − wmmdt, m= n.
J sA1d

In this notation we obtain

fWgf = f . sA2d

This equation has the form of an eigenvalue problem with
one eigenvalue beingl=1. In principle also the remaining
eigenvalues and eigenvectors can be determined, but it is
necessary to keep in mind that in spite of the fact that theW
matrix is real, it is not necessarily symmetric and is thus
non-Hermitian. The remaining eigenvalues are in general
complex; also the eigenvectors are complex and not neces-
sarily orthogonal. Numerical diagonalization of real nonsym-
metric matrix is a tedious procedure, and it is hard to obtain
proper numerical routines that solve the problem. However,
the l=1 eigenvector of ourW matrix is an exception be-
cause, since the eigenvalue is known, one can apply the sub-
routine for the solution of the system of linear equations with
the Gauss-Jordan elimination procedure and determine the
l=1 eigenvector.

By means of theW matrix one can express the time varia-
tion of the f vector in the following way:

fsdtd = fWsdtdgfs0d sA3d

This equation is valid for short enough time intervals which
meanspsdt!1 andpmdt!1. To propagate the composition
vector for a longer time period, sayt=k dt, one has to oper-
ate on fs0d with Wsdtd raised to thekth power: fWstdg
=fWst /kdgk.

The matrixfWstdg possesses the following limiting prop-
erty:

lim
k→`

fWsdtdgk = ff,f, . . . ,fg sA4d

where f is the eigenvector ofl=1 eigenvalue. Let us illus-
trate this for the three-dimensional case. A general form of
the matrix looks as follows:

W = *1 − c − e a b

c 1 − a − g d

e g 1 − b − d
* . sA5d

For our purpose all six parameters are supposed to be posi-
tive and to satisfy the conditionS=a+b+c+d+e+g,1.
The diagonalization of the matrix can be done by hand and
one obtainsl1=1 and l2,3=1−S /2±ÎS2/4−4S where S
=ab+ad+ae+cb+cd+cg+bg+de+eg. Also the eigenvec-

FIG. 7. Limiting behavior ofWsm,nd matrix elements predicted
by Eq. sA4d. The initial values of nine matrix elements of the 3
33 W matrix fEq. sA5d with a=0.1, b=0.08,c=0.06, d=0.04, e
=0.02, andg=0.01g are displayed along the vertical axis at the left
side of the figure. The values of matrix elements at higher powers of
the W matrix converge towardfs1d=0.542, fs2d=0.339, andfs3d
=0.119 values that are displayed along the vertical axis at the right
side of the figure. The variablek along the horizontal axis repre-
sents the binary logarithm of the power to which the matrix was
raised. The uppermost three curves belong to the diagonal elements,
while the remaining ones belong to the off-diagonal matrix
elements.
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tors can be calculated. We only give the one that corresponds
to l1=1: fs1d=sad+ab+bgd /S, fs2d=scb+cd+ebd /S, fs3d
=sae+cg+egd /S. In Fig. 7 it is shown how the matrix ele-
ments transform in the process of arising the matrix to higher

powers. Also ourW matrices that were used to define the
model replacement frequency matrices for the three homol-
ogy classes used in Sec. II are behaving in a similar way as
the matrices whose matrix elements are exhibited in Fig. 7.
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