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Evidence on DNA slippage step-length distribution
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A simple model based on a master equation is constructed in order to reveal the details of the mutational
events modifying simple sequence repeats in the human genome, A database of simple repeats together with
their flanking sequences comprising approximately é&ftries from all 24 human chromosomes was con-
structed. By aligning the pairs of fragments of sequences containing the repeat elements, the matrices that
count the number of slippage events were evaluated. The counts were then used as a target to be reproduced by
our theoretical model, in which the elongation and shortening of the repeats proceed through a mechanism in
which the step lengths exhibit a decaying distribution in the form of an inverse power law rather than through
one nucleotide extension or deletion, which was the most frequent supposition in previous studies.
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[. INTRODUCTION In this work we shall focus our attention on the category
of tandem repeats with monomeric units of minimal com-
The acquisition of the nucleotide sequences of entire geplexity. Such repeats are usually called microsatellites or
nomes of several biological species, including the humarshort simple repeatSSR’9. They appear predominantly in
genome, improves the insight into biological processes omoncoding region$3,4], but also in the regions where pro-
the molecular level and enables one to construct physicakins are codefb].
models. At the moment the understanding of organismal The SSR content of the human genome is approximately
functioning and development is still buried deeply among the?%. This is far above the expectation on the basis of the
fine details of genome organization. The availability of infor- hypothesis of a random nucleotide sequence. One can hy-
mation about nucleotide sequences enables us to obtain pgethesize that an overrepresented class of sequences can ex-
tial answers. One of the challenges is posed by the very higtst only if a special mechanism of repeat amplificati@j
content of repeat sequences, which is close to 50% in thexists. It turns out that such a mechanism is present in the
human genomgl]. Repeats can be of tandem or interspersegrocess of either DNA synthesis or DNA recombination. The
character. Interspersed repeats are the products of transposepeat amplifying mechanism has its roots in the fact that the
activities, while tandem repeats have their source in repeatanslational symmetry of the template strand produces de-
amplification mechanisms. Transposons are special Seenerate energetic states in the landscape of the template
quences that possess the ability to form new copies elsgoNA strand—enzyme and nascent DNA strand—enzyme inter-
where in the genome. Not all of them can multiply them- actions. Such a degeneracy makes the mechanism of DNA
selves autonomously. Examples of autonomous elements aggnihesis vulnerable to errors in the form of so called slip-
long interspersed repeat elemeﬂw_\IE’s) or retroviruslike page events that occur when the DNA ribbon slips out of
elements, each of them comprising several thousands Qfiqer tg a new position relative to the polymerase enzyme,

nucleotides. Autonomous transposon elements mediate in U?Srward or backward for one or several monomeric repeat

proliferation of other transposon elements such as short ir\]nits If the template strand slips backward, for instance, the
terspersed repeatSINE’s) a few hundreds of nucleotides in : P P ' '

length, which exhibit the highest copy numlene and half resulting naspent ;trand will pe .prolonged; 'in the oppogite
million) in the human genome. Altogether the interspersed:ase_Shortemng will result. A5|m|lar mechanism is operative
repeats represent more than 40% of the human genome. Tﬁ‘éso .|n the case of ano_ther Important molecqlar <_:e||u|ar pro-
most widespread SINE elements are so caledsequences cess: DNA recombination at meiosis. Also in th|s_ case the
whose elements comprise approximately 330 nucleotided€Petitive DNA sequence represents a drawback since a vital
Studies of the internal structure of the interspersed repea ase of rgcomblnanon is the pairing of complementary
reveal the stretches of tandem repeats that are integrated ¥ rands of highly homologous regions of maternal and pater-

the LINE or SINE sequence itself, and also the flanks Ofnal regions of DNA sequences. In repetitive regions the pro-

interspersed repeats are populated by tandem repeats. 2SS of homologous_pairing has ml_JItip_Ie realizations and
sides the location in the vicinity of LINE or SINE sequences,W'th a certain probability the recombination process results

tandem repeats are also scattered throughout the chromt: the prolongation of one and the shortening of the other

somes. Repeats in nucleotide sequences have been Iinkedr"[%vvIy recombmgd strand. The above menUoned mechanisms
the notion of molecular parasitisfa]. become operative only above a certain threshold repeat

length that is approximately ten base pairs. The value of the
threshold repeat length is approximately equal to the extent
of the contact between the DNA helix and polymerase en-
*Electronic address: branko@hp10.ki.si zyme[7].
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Since we are building our strategy on the statistics of thespecies. We limit ourselves to the human species where one
events that can be inferred by comparing pairs of sequencean perform so called orthologous interchromosomal and in-
having a common ancestor, it is important to note that thererachromosomal comparisons that retrieve the homologies
exists also another mechanism which contributes to theesulting from transposon activities or segmental duplica-
growth of DNA content. This is the segmental duplicationtions. Transposon activities in human species are declining
mechanism which generates new copies of DNA segmentgyring the last several millions of years and today the com-
elsewhere on the same chromosome, or on another chromgayisons that track the transposing processes uncover low
some. The lengths of the segments being copied are usual mologies with several overlapping events taking place at

on the megabase scale. Hsieh and co-worl@rsave shown  yhe same site. The segmental duplications, on the other hand,
that segmental duplication is a fundamental ingredient of 9€3eem to occur with a rather uniform pace and the total
nome evolution. For our purpose the phenomenon of se

S X . . %mount of sequences that were duplicated and exhibit today
mental duplication mechanism is extremely important be-

imi I 04 | I 0,
cause i povdes s wih an ample amount of repea® TN ST S0 O 35
positioned in closely related flanking sequences, which we J y 9 P

analyze with the purpose of getting insight into the SSRMan seguences containirjg repeats. When finding such a case
evolutionary dynamics. one should try to determl_ne whet_her the difference between

Besides repeat elongations and repeat shortenings, poilité repeats themselves, if there is any, stems from a single
mutations also modify the repeats. The results of point muf€peat modification event or whether there were several
tation are two shorter repeats or, in the case that the mutatigRdifications superimposed on the particular repeat. In what
takes place too close to the left or to the right end of thefollows we shall work out a strategy that will try to reveal
repeat, depending on the criterion for the minimum repeathe details of the repeat elongation and shortening process.
length, only one or none of the remaining segments may The most freqqent short simple repeats in human genome
retain the repeat character. The combined effect of slippag@® Mmononucleotidega/t). They are followed by(at/at),
and point mutational mechanisms can be modeled in variougc/gt), and(ag/ct) repeat elements whose probabilities of
ways[9]. The models should be able to reproduce, as well agppearance exhibit a decreasing order. There are approxi-
the repeat length distribution, also the positional correlationgnately 2< 1(° nucleotides within polyadenine tracts longer
between the sites where the repeats are located along tkean ten base pairs. All the other categories of SSRs are at
DNA sequence. It was shown by Pery al. [10] that least five times less abundant and therefore we shall base our
nucleotide-nucleotide correlation in the DNA sequences caiork on analyses ofa/t) repeats. This choice is to some
be described by an inverse power law, but it was also showaxtent problematic anda/t) repeats are usually left aside
that in specific cases the correlation functions decay expaarguing that “polyadenine tracts are usually associated with
nentially [11]. Holste et al. [12], who analyzed one of the Alu sequences and hence subject to special selection con-
human chromosomes, found that the nucleotide-nucleotidstraints” (a quotation taken from Refl14]). In order to re-
correlation functions exhibit a clear inverse power law decaygduce the objections against tfe/'t) repeats we have omitted
and they demonstrated that the distribution of interspersetfom our analyses the polyadenine tracts which are parts of
repeats and SSR'’s plays a significant role in shaping thélu sequences.
overall picture of nucleotide distributions.

In our previous worl 13] the positional correlations be-
tween the repeats were used as a constraint together with the ;1. ANALYSES OF HUMAN POLYADENINE REPEATS
SSR length distribution in constructing a model that allowed
the slippage process to possess asymmetry in the elongation '€ sequences of all 24 human chromosomes from ftp:/
versus shortening of the SSR. We demonstrated that thi&P-ncbi.nih.gov/genomes/Hapiens were analyzed and sev-
model reproduces satisfactorily the properties of SSR’s in th&'@l files of polyadenine elements together with their envi-
human genome. An obvious shortcoming of our approacﬁonments in the form of fragments of left and right flanking

was due to the fact that the model allowed only slippage®®duences were created. The lengths of the flanking frag-
events with unit step lengthn=+1. In this work we explore ments were set arbitrarily to 20 nucleotides at each side of

how far from reality this approximation is. By examining h€ repeat. The poly adenine tracts were required to have a
many pairs of repeats together with their environments wéninimum length of 10 nucleotides. Further, we only took
scrutinize the flanking sequences on both sides of the repedf©® consideration the repeats whose flanks possess high
to detect evidence about a common history. If the flankinggheugh information content. This means that the repeat ele-
regions of two repeats possess high enough homology, thépents whose fIanI_<s exhibited repeat structure were dis-
are most probably descendants of a common ancestral sgd'ded. The resulting database extracted from human ge-
quence. Similar or homologous sequences are believed to B@Me nucleotide sequences encompassed more tha’3

the result of a divergence, be it in the form of speciation"€Peats.
(appearance of new biological spegies in the form of The flanks of all the repeats were mutually compditbe

copying DNA segments from one site to another site of thd€eft flank with the left flank and the right flank with the right
same chromosome or from one chromosome to another onfiank). When the homology was above 90% the information

To detect the mutations that occur after speciation one shouf@Pout the number of such cases was stored in_to the replace-
compare two paralogouéaving the same functigrDNA  ment frequency matrice&™(m,n). The (m,n) pair of indi-
sequences belonging to the members of two closely relateckes refers to the lengths of the two repeats whose flanks were
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FIG. 3. Same as Fig. 1, except for the class90%.

FIG. 1. Plot of the mutation frequency matx™ within the

classh=100%_. The two horizontal axes refer to the lengths of th_eequilibrium. The repeat elements can be created, destroyed,
two polyadenine repeats that are compared and along the verticgl axperience elongations and shortenings due to point mu-
axis the logarithm of the number of the pairs foundiom pair of  {4tions and slippage events. The rate equation for the repeat
repeat lengths is plotted. populationN(n) can be written as follows:

compared. The superscript refers to the homologies be- d

tween the flank$h=100%, 95%, and 90%The polyadenine d—tmN(m) = > Wi AN(N) = mN(M) X, w,,,,  for eachm.
tracts were not required to be pure but were allowed to pos- n n

sess 0, 1, or 2 point mutations in the=100%, 95%, and (1)
90% classes, respectively. This requirement makes flanks

and repeats compatible as far as the mutational history iEhe wi,, matrix element(belonging to thew matrix) repre-
concerned. To obtain an impression about the form of théents the probability that a repeat with lengthis trans-
replacement frequency matrices, we present them graphicalfgrmed to a repeat with lengtim per unit of time. By means
in Figs. 1-3. One can notice two distinctive featur@sthe  of thew matrix andN(n) histogram one can make a quanti-

AM(m,n) values decay roughly exponentially as a functiontative prediction of the repeat modification events. The num-

of the absolute value of the difference between the two indiP€r of counts predicted by the theoretical model can be ex-

ces, and(ii) the repeats in lower mutual homology classesPressed as the product of the matrix elemeny, that
exhibit slower decay. represents the probability of the event and the “mass

[nN(n)] of the repeats that can be subjected to the transition.

However, since one has no control over the directionality of

the transitions, it makes sense to take the average value of

Let us present and discuss the algebra on the basis ¢fie m—n and m«n transitions, and we define the model

which the data that are presented in Figs. 1-3 were analyzegbplacement frequency matrix as follows:

The length modifications of polyadenine repeats can be

treated by means of the formalism of rate equatidrig. Let AY_(m,n) = [Win(ONN(N) + W (OmNm))2.  (2)

us consider a populatioN(n) of repeats that are in dynamic
TheW/(t) matrix is derived from thev matrix as described in
the Appendix. Thet parameter measures the time that
elapsed from the moment when the pairs of repeats that are
compared bifurcated and started their independent muta-
tional history. According to the molecular clock hypothesis
the homology of a pair of sequences that have a common
origin decays as a function of time by the Jukes and Cantor
formula [16] h=hy+(1-hg)exp(-p.t), wherehy is the ho-
mology of unrelated sequences anglis the probability for

s a point mutational event per nucleotide per unit of time. In
the case of flanking regiory, is 1/4 because of four differ-
ent nucleotides participating in the sequence while within the
mononucleotide repeats one can consider the sequence as

A. Replacement frequency and mutation probability matrices

In[A(m,n)]

T oo being composed of two types of nucleotides: those belonging
to the repeatadenines in our cageand mutated ones, thus
FIG. 2. Same as Fig. 1, except for the class95%. leading tohy=1/2.
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The matrix elements that are responsible for the creation The Afgod matrix can be compared with the replacement
and destruction processes are located in the first column arfgequency matrix obtained by means of analyses of human

the first line of thew matrix, respectively. It is very difficult genomic DNA sequences. In fact tA&) matrices presented
to parametrize the probabilities of these processes. ONg Figs. 1-3 are not the most suitable quantities to be com-

would need many parameters that are nearly impossible tBared withA®  and we introduced the mass weightet?

. . . mod
determine and the only reasonable strategy is to devise @ ,yices whose matrix elements are proportional to the num-

O+ of monomers that are involved in the slippage process.
When comparing two repeats, one with lengthand the
other with lengthn one does not know whether the slippage
direction ism—n or m«—n. The number of monomers that

taken explicitly into account.
A point mutational event that occurs within the repeat
transforms a repeat with length into two repeats with

lengthsn; andn, wheren; +n,+1=n. The parametrization of are subjected to the slippage process could be thas n,

mutau_on_al events Is .rath_er simple: On_e SUppPOSes that Wnd therefore we defined a lower triangular mass weighted
tht)ﬁiglt;m the repeat is hit by the mutation with equal prob-rejacement frequency matrix as the average value:
-
The_ eIongation and shortening processes are usually pa- AN (mn) = (m+ n)gm)(m, ny/2. (4)
rametrized with one or two parameters. The one-parameter
expression for the probability per unit of time that a repeatis To understand and reproduce the slippage process we
subjected to the slippage event is usually written in the formshould determine the parameters introduced into the muta-
Wfﬁ),ans- This implies that the slippage probability is pro- tion probability matrix W(t). The model replacement fre-
portional to the repeat length. Another possibility is to allow quency matriceg\ that result fromW (t) should fit to the
the slippage process to be unsymmeitig] in the sense that natural replacement frequency matriee® that were gener-
elongations are not necessarily equally as probable as shosated by counting the pairs of repeats in homologous environ-
enings. In such a case one has to introduce another parameteents.
that measures the asymmetry. In what follows we shall work
out a methodology that will focus on symmetric slippage . RESULTS
events. Ignoring the creation and destruction processes and
under the hypothesis that the slippage process leads to repeatThe numerical results show that the inverse power law
elongation with the same probability as for repeat shorteningeads to the best agreement between model and natural re-
the mutation probability matrix looks as follows: placement frequency matrices. The slippage step length dis-
tribution function was modeled in the forifif|m—n|)=pgm

-n|"*/{(a). The parametep, is a measure of the probability

nf(lm-nj), n=m+lorn<m, that a slippage occurs. The factfw) is the Riemann zeta
_Jamp/(n=1) +nf(m-n), n>m+1, function and takes care of the normalization of the step
Wmn= length distribution. Wher— oo the distribution function ap-
- kg)wkmy n=m. proaches thes function at|m-n|=1, which corresponds to
m,

the standard one-nucleotide slippage regime, while finite val-
(3)  ues of @ mean finite width of the step length distribution.

Since the disruption of the repeats by point mutations was
) ] o only used as a measure of time that elapsed from the moment
The functionf(lm-n|) defines the distribution of the prob- \yhen the two sequences were duplicated, fheparameter
abilities of slippage step lengths, which broadens the starjoes not enter into the construction of the model replacement
dard supposition that is based on the model according tgequency matrices. There remain only two parameters to be
which the slippage step lengths are of unit sige—-n[=1).  determined: the exponent and the dimensionlesgex-
The slippage step length distribution functiéfim—n|) was  pressed in units of the inverse fy/parametertime param-
assayed using three functional forms: a rectangular one, agtert for each homology class. A two-parameter fitting pro-
exponentially decaying form, and an inverse power lawcedure does not represent a serious numerical task provided
form. The first term in the middle line on the right-hand sidethat the value function which is subjected to the optimization
of Eq. (3) refers to the point mutational events that occurprocedure is well defined and smooth enough. In our case the
when a repeat of lengthis split into two pieces with lengths  most straightforward choice of the quantity to be minimized
m=m, andm,. To focus attention on the slippage process wewould be an arbitrary norm of the difference between natural
conduct the procedure by ignoring the point mutationaland model mass weighted replacement frequency matrices.
events, that is, by neglecting thenfy,,/(n—1) term. This  We decided to use the absolute value of the difference be-
means that we treat the repeats as if they were not interruptedieen the logarithms of the first few columns of th& and
by point mutations. In this way the concept of the moleculara " matrices, respectively. The logarithmic measure was
clock can be invoked, since th&™ data which are parti- used instead of a linear measure in order to attain the proper
tioned into three homology classes whik 100%, 95%, and weight of far-from-diagonal elements that would have negli-
90% are supposed to belong to three time intervals wittgible weight in a linear scaling regime due to rapid decay of
gradually increasing amount of superimposed mutationathe A”(m,n) elements as a function of growing difference
events. between the two indices. The fitting procedure was carried
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FIG. 4. The decay of columns o&™ (full lines) and AY FIG. 6. Same as Fig. 4 for class=90%.

(dashed ling matrices.AM matrix elements were deducedm??om

natural DNA sequences and they are compared ngd whichis  dered due to strong scatter Af" elements, but in spite of

the result of our modeh=100%. that we think that the agreement between the matrices de-
duced from natural DNA sequences is satisfactory.

out by a simple brute force search for the pairsaofndt

values that produce optimal fit betwea. , andA®™. The

following results were obtained:=2.4+0.4;ps=0.03, 0.05, IV. DISCUSSION AND CONCLUSIONS

and 0.07 for the 100%, 95%, and 90% homologies in the

flanking regions, respectively. In Figs. 4—6 the counts per

formed on natural sequences and the results of our model

In this work we demonstrate that the mutational dynamics
of short sequence repeats can also be treated in a standard

. , ay by searching for pairs of highly homologous sequences
compared. Full lines represent the columns of mass weighte d inferring the repeat modification events from the ob-

repllace[r)nerr;t c;rtla_quency matrltcz? dravvlr: 0? a logad”trm.'t%erved differences between the pairs of sequences that are
scale. Dashed fines represent the results ol our model Witgy, ;545564 to have a common ancestor. In our case we deal

the parameters fitted to reach the optimal agreement with thg, 1hree types of mutational events: repeat elongations and

natural matrix counterpart. The fitting procedure was h'n'shortenings, point mutations in the regions of repeats, and

point mutations in the flanking regions. Algebra based on the
master equation formalism enabled us to resolve the problem
In[A{m,n)] of superpositions of mutational events and to single out the
probabilities of elementary mutational events.

Our results enable us also to draw a comparison between
point mutational and slippage processes. The three homolo-
gies (100%, 95%, and 90%correspond, according to the
Jukes-Cantor formula, to the valupgt=0, 0.069, and 0.14.

Let us compare these values with the corresponding values
pertaining to slippage processes. The first pair of vajues
=0.03,p,t=0 is consistent with the notion that slippage pro-
cesses are running at a higher pace than point mutations.
This notion is based on a scenario that proposes that slippage
processes and point mutations contribute comparable
amounts of change at each turnover of human generations.
The values of the parameters that support this regime are
Pm=2.2X 10°°/yr/nucleotide[17] and one to two orders of
magnitude higher value gd; [14]. However, the second two
pairs of pg, p.t values (p3°/p>=0.05/0.069 ando’/p

12 T T T T

010 1'2 1'4 1'6 1'8 M =0.07/0.14 indicate that the balance betwe@g and p,,
need not be so much in favor pf. One should of course be
FIG. 5. Same as Fig. 4 for clags95%. aware that the comparison that is based on the alignment of
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1 T . . . T . knowledged. Norma MankoBorstnik is acknowledged for
W(m,n) helpful discussions regarding the propertiesnomatrices.
0.8 7 APPENDIX: THE PROPERTIES OF THE w MATRIX

In this appendix the properties of the matrices are dis-
cussed. For the stationarity conditidiN(m)]/dt=0 Eq. (1)
0.6 I 1 acquires the formw]f=0 with f=nN(n)/=nN(n) and Wy,
i =—2+mWkm It is convenient to incorporate thét param-

eter into thew matrix and to define

04 r " W (dt) = {wmndt, m#n, (A1)
mn 1-w,dt, m=n.
02 L | In this notation we obtain
! [W]f =f. (A2)
k This equation has the form of an eigenvalue problem with
0 ] A g '4 '5 '6 '7 A one eigenvalue beiny=1. In principle also the remaining

eigenvalues and eigenvectors can be determined, but it is
FIG. 7. Limiting behavior oM(m, n) matrix elements predicted Necessary to keep in mind that in spite of the fact thatthe
by Eq. (A4). The initial values of nine matrix elements of the 3 mMatrix is real, it is not necessarily symmetric and is thus
X 3 W matrix [Eq. (A5) with a=0.1, b=0.08,¢c=0.06,d=0.04,¢e non-Hermitian. The remaining eigenvalues are in general
=0.02, andg=0.01] are displayed along the vertical axis at the left complex; also the eigenvectors are complex and not neces-
side of the figure. The values of matrix elements at higher powers o$arily orthogonal. Numerical diagonalization of real nonsym-
the W matrix converge toward(1)=0.542,1(2)=0.339, andf(3) metric matrix is a tedious procedure, and it is hard to obtain
=0.119 values that are displayed along the vertical axis at the rightroper numerical routines that solve the problem. However,
side of the figure. The variable along the horizontal axis repre- the A=1 eigenvector of oulWW matrix is an exception be-
sents the binary logarithm of the power to which the matrix wascguse, since the eigenvalue is known, one can apply the sub-
raised. The uppermost three curves belong to the diagonal elemenigytine for the solution of the system of linear equations with
while the remaining ones belong to the off-diagonal matrixthe Gauss-Jordan elimination procedure and determine the
elements. A=1 eigenvector.

flanks (with 95% and 90% homologigf the repeats that _ BY means of théV matrix one can express the time varia-
contain one or two point mutations are treated as if they wer&on of thef vector in the following way:
pure repeats. This trick helped us to build the concept of the _
molecular clock directly into the slippage process, but on the f(d =[W(dD]i(0) (A3)
other hand we introduced some inconsistency because mirhis equation is valid for short enough time intervals which
tated repeats do not necessarily exhibit the same slippagaeanspdt<1 andp,dt<1. To propagate the composition
propensity as nonmutated ones and since the time ordering g&ctor for a longer time period, sayk dt, one has to oper-
the two events is unknown, our results corresponding) to ate onf(0) with W(dt) raised to thekth power: [W(t)]
=95% and 90% are to some extent uncertain. We should thus[y (t/k)J«.
mostly rely on then=100% case which does not provide us  The matrix[W(t)] possesses the following limiting prop-
a quantitative measure about thg py, ratio, but only indi- g 4y-
cates that the slippage process runs faster than the point mu-
tational process. lim[W(dtyJk=[f.f, ... f] (A4)

To conclude, let us recapitulate our findings. The main ke
interest of our results is the evidence that it is possible to g@uheref is the eigenvector ok=1 eigenvalue. Let us illus-

beyond a simple model which assumes that the step lengtfate this for the three-dimensional case. A general form of
distribution in the slippage process has a trivdafunction  the matrix looks as follows:

appearance witlAn=+1. The results predict a monotoni-

cally decaying step length distribution in the form of an in- l-c-e a b
verse power law, not very far from & function, since the W = c l-a-g d ) (A5)
distribution decays faster than the inverse second power. e g 1-b-d

Only one-third of slippages are predicted to go beyond the
single nucleotide step length. For our purpose all six parameters are supposed to be posi-
tive and to satisfy the conditio=a+b+c+d+e+g<1.
ACKNOWLEDGMENTS The diagonalization of the matrix can be done by hand and
The financial support of the Ministry of Education, Sci- one obtainsh;=1 and A\, 3=1-3/2+y32/4-4S where S
ence and Sport of the Republic of Slovenia is gratefully ac=ab+ad+ae+cb+cd+cg+bg+deteg Also the eigenvec-
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tors can be calculated. We only give the one that correspondgsowers. Also oulW matrices that were used to define the
to \y=1: f(1)=(ad+ab+bg)/S, f(2)=(cb+cd+eb)/S, f(3) model replacement frequency matrices for the three homol-
=(aet+cg+eg/S. In Fig. 7 it is shown how the matrix ele- ogy classes used in Sec. Il are behaving in a similar way as
ments transform in the process of arising the matrix to highethe matrices whose matrix elements are exhibited in Fig. 7.
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